pulpissimo by drossi


PULPissimo is the microcontroller architecture of the more recent PULP chips, part of the ongoing "PULP platform" collaboration between ETH Zurich and the University of Bologna - started in 2013.

PULPissimo, like PULPino, is a single-core platform. However, it represents a significant step ahead in terms of completeness and complexity with respect to PULPino - in fact, the PULPissimo system is used as the main System-on-Chip controller for all recent multi-core PULP chips, taking care of autonomous I/O, advanced data pre-processing, external interrupts, etc. The PULPissimo architecture includes:

  • Either the RI5CY core or the Ibex one as main core
  • Autonomous Input/Output subsystem (uDMA)
  • New memory subsystem
  • Support for Hardware Processing Engines (HWPEs)
  • New simple interrupt controller
  • New peripherals
  • New SDK

RISCY is an in-order, single-issue core with 4 pipeline stages and it has an IPC close to 1, full support for the base integer instruction set (RV32I), compressed instructions (RV32C) and multiplication instruction set extension (RV32M). It can be configured to have single-precision floating-point instruction set extension (RV32F). It implements several ISA extensions such as: hardware loops, post-incrementing load and store instructions, bit-manipulation instructions, MAC operations, support fixed-point operations, packed-SIMD instructions and the dot product. It has been designed to increase the energy efficiency of in ultra-low-power signal processing applications. RISCY implementes a subset of the 1.10 privileged specification. It includes an optional PMP and the possibility to have a subset of the USER MODE. RISCY implement the RISC-V Debug spec 0.13. Further information about the core can be found at http://ieeexplore.ieee.org/abstract/document/7864441/ and in the documentation of the IP.

Ibex, formely Zero-riscy, is an in-order, single-issue core with 2 pipeline stages. It has full support for the base integer instruction set (RV32I version 2.1) and compressed instructions (RV32C version 2.0). It can be configured to support the multiplication instruction set extension (RV32M version 2.0) and the reduced number of registers extension (RV32E version 1.9). Ibex implementes the Machine ISA version 1.11 and has RISC-V External Debug Support version 0.13.2. Ibex has been originally designed at ETH to target ultra-low-power and ultra-low-area constraints. Ibex is now maintained and further developed by the non-for-profit community interest company lowRISC. Further information about the core can be found at http://ieeexplore.ieee.org/document/8106976/ and in the documentation of the IP at https://ibex-core.readthedocs.io/en/latest/index.html

PULPissimo includes a new efficient I/O subsystem via a uDMA (micro-DMA) which communicates with the peripherals autonomously. The core just needs to program the uDMA and wait for it to handle the transfer. Further information about the core can be found at http://ieeexplore.ieee.org/document/8106971/ and in the documentation of the IP.

PULPissimo supports I/O on interfaces such as:

  • SPI (as master)
  • I2S
  • Camera Interface (CPI)
  • I2C
  • UART
  • JTAG

PULPissimo also supports integration of hardware accelerators (Hardware Processing Engines) that share memory with the RI5CY core and are programmed on the memory map. An example accelerator, performing multiply-accumulate on a vector of fixed-point values, can be found in ips/hwpe-mac-engine (after updating the IPs: see below in the Getting Started section). The ips/hwpe-stream and ips/hwpe-ctrl folders contain the IPs necessary to plug streaming accelerators into a PULPissimo or PULP system on the data and control plane. For further information on how to design and integrate such accelerators, see ips/hwpe-stream/doc and https://arxiv.org/abs/1612.05974.

Getting Started

We provide a simple runtime and a full featured runtime for PULPissimo. We recommend you try out first the minimal runtime and when you hit its limitations you can try the full runtime by installing the SDK.

After having chosen a runtime you can run software by either simulating the hardware or running it in a software emulation.

Simple Runtime

The simple runtime is here to get you started quickly. Using it can run and write programs that don't need any advanced features.

First install the system dependencies indicated here

Then make sure you have pulp-riscv-gnu-toolchain installed (either by compiling it or using one of the binary releases under available under the release tab) and point PULP_RISCV_GCC_TOOLCHAIN to it:


Get the repository for the simple runtime:

git clone https://github.com/pulp-platform/pulp-runtime/

The simple runtime supports many different hardware configurations. We want PULPissimo:

cd pulp-runtime
source configs/pulpissimo.sh

Now we are ready to set up the simulation environment. Normally you would want to simulate the hardware design running your program, so go here.

Software Development Kit

If you need a more complete runtime (drivers, tasks etc.) you can install the software development kit for PULP/PULPissimo.

First install the system dependencies indicated here

In particular don't forget to set PULP_RISCV_GCC_TOOLCHAIN.

You can now either follow the steps outlined here to build the full sdk or just call

make build-pulp-sdk

and then set up the necessary environment variables with

source env/pulpissimo.sh

Building the RTL simulation platform

To build the RTL simulation platform, start by getting the latest version of the IPs composing the PULP system:


This will download all the required IPs, solve dependencies and generate the scripts by calling ./generate-scripts.

After having access to the SDK, you can build the simulation platform by doing the following:

source setup/vsim.sh
make build

This command builds a version of the simulation platform with no dependencies on external models for peripherals. See below (Proprietary verification IPs) for details on how to plug in some models of real SPI, I2C, I2S peripherals.

For more advanced usage have a look at ./generate-scripts --help and update-ips --help.

Also check out the output of make help for more useful Makefile targets.

Downloading and running examples

Finally, you can download and run examples; for that you can checkout the following repositories depending on whether you use the simple runtime or the full sdk.

Simple Runtime: https://github.com/pulp-platform/pulp-runtime-examples

SDK: https://github.com/pulp-platform/pulp-rt-examples

Now you can change directory to your favourite test e.g.: for an hello world test, run

cd pulp-rt-examples/hello
make clean all run

The open-source simulation platform relies on JTAG to emulate preloading of the PULP L2 memory. If you want to simulate a more realistic scenario (e.g. accessing an external SPI Flash), look at the sections below.

In case you want to see the Modelsim GUI, just type

make run gui=1

before starting the simulation.

If you want to save a (compressed) VCD for further examination, type

make run vsim/script=export_run.tcl

before starting the simulation. You will find the VCD in build/<SRC_FILE_NAME>/pulpissimo/export.vcd.gz where <SRC_FILE_NAME> is the name of the C source of the test.

Building and using the virtual platform

Once the sdk is installed, the following commands can be executed in the sdk directory to use the virtual platform:

source sourceme.sh
source configs/platform-gvsoc.sh

Then tests can be compiled and run as for the RTL platform. When switching from one platform to another, it may be needed to regenrate the test configuration with this command:

make conf

More information is available in the documentation here: pulp-builder/install/doc/vp/index.html


PULPissimo has been implemented on FPGA for the various Xilinx FPGA boards.

Supported Boards

At the moment the following boards are supported:

  • Digilent Genesys2
  • Xilinx ZCU104
  • Xilinx ZCU102
  • Digilent Nexys Video
  • ZedBoard

In the release section you find precompiled bitstreams for all of the above mentionied boards. If you want to use the latest development version PULPissimo follow the section below to generate the bitstreams yourself.

Bitstream Generation

In order to generate the PULPissimo bitstream for a supported target FPGA board first generate the necessary synthesis include scripts by starting the update-ips script in the pulpissimo root directory:


This will parse the ips_list.yml using the PULP IPApproX IP management tool to generate tcl scripts for all the IPs used in the PULPissimo project. These files are later on sourced by Vivado to generate the bitstream for PULPissimo.

Now switch to the fpga subdirectory and start the apropriate make target to generate the bitstream:

cd fpga
make <board_target>

In order to show a list of all available board targets call:

make help

This process might take a while. If everything goes well your fpga directory should now contain two files:

  • pulpissimo_<board_target>.bit the bitstream file for JTAG configuration of the FPGA.
  • pulpissimo_<board_target>.bin the binary configuration file to flash to a non-volatile configuration memory.

If your invocation command to start Vivado isn't vivado you can use the Make variable VIVADO to specify the right command (e.g. make genesys2 VIVADO='vivado-2018.3 vivado' for ETH CentOS machines.) Boot from ROM is not available yet. The ROM will always return the jal x0,0 to trap the core until the debug module takes over control and loads the programm into L2 memory. Once the bitstream pulpissimo_genesys2.bit is generated in the fpga folder, you can open Vivado vivado (we tried the 2018.3 version) and load the bitstream into the fpga or use the Configuration File (pulpissimo_genesys2.bin) to flash it to the on-board Configuration Memory.

Bitstream Flashing

Start Vivado then:

Open Hardware Manager
Open Target
Program device

Now your FPGA is ready to emulate PULPissimo!

Board Specific Information

Have a look at the board specific README.md files in fpga/pulpissimo-<board_target>/README.md for a description of peripheral mappings and default clock frequencies.

Compiling Applications for the FPGA Target

To run or debug applications for the FPGA you need to use a recent version of the PULP-SDK (commit id 3256fe7 or newer.'). Configure the SDK for the FPGA platform by running the following commands within the SDK's root directory:

source configs/pulpissimo.sh
source configs/fpgas/pulpissimo/<board_target>.sh

If you updated the SDK don't forget to recompile the SDK and the dependencies.

In order for the SDK to be able to configure clock dividers (e.g. the ones for the UART module) to the right values it needs to know which frequencies PULPissimo is running at. You can find the default frequencies in the above mentioned board specific README files.

In our application we need to override two weakly defined variables in our source code to configure the SDK to use these frequencies:

#include <stdio.h>
#include <rt/rt_api.h>

int __rt_fpga_fc_frequency = <Core Frequency> // e.g. 20000000 for 20MHz;
int __rt_fpga_periph_frequency = <SoC Frequency> // e.g. 10000000 for 10MHz;

int main()

By default, the baudrate of the UART is set to 115200.

Add the following global variable declaration to your application in case you want to change it:

unsigned int __rt_iodev_uart_baudrate = your baudrate;

Compile your application with

make clean all

This command builds the ELF binary with UART as the default io peripheral. The binary will be stored at build/pulpissimo/[app_name]/[app_name].

Core selection

By default, PULPissimo is configured to use the RI5CY core with floating-point support being enabled. To switch to Ibex (and disable floating-point support), the following steps need to be performed.

  1. Switch hardware configuration

    Open the file fpga/pulpissimo-<board_target>/rtl/xilinx_pulpissimo.v and change the CORE_TYPE parameter to the preferred value. Change the value of the USE_FPU parameter from 1 to 0. Save the file and regenerate the FPGA bitstream.

  2. Switch SDK configuration

    Instead of sourcing configs/pulpissimo.sh when configuring the SDK, source configs/pulpissimo_ibex.sh.

GDB and OpenOCD

In order to execute our application on the FPGA we need to load the binary into PULPissimo's L2 memory. To do so we can use OpenOCD in conjunction with GDB to communicate with the internal RISC-V debug module.

PULPissimo uses JTAG as a communication channel between OpenOCD and the Core. Have a look at the board specific README file on how to connect your PC with PULPissimo's JTAG port.

Due to a long outstanding issue in the RISC-V OpenOCD project (issue #359) the riscv/riscv-openocd does not work with PULPissimo. However there is a small workaround that we incorporated in a patched version of openocd. If you have access to the artifactory server, the patched openocd binary is installed by default with the make deps command in the SDK. If you don't have access to the precompiled binaries you can automatically download and compile the patched OPENOCD from source. You will need to install the following dependencies on your machine before you can compile OpenOCD:

  • autoconf >= 2.64
  • automake >= 1.14
  • texinfo
  • make
  • libtool
  • pkg-config >= 0.23 (or compatible)
  • libusb-1.0
  • libftdi
  • libusb-0.1 or libusb-compat-0.1 for some older drivers

After installing those dependecies with you OS' package manager you can download, apply the patch and compile OpenOCD with:

source sourceme.sh && ./pulp-tools/bin/plpbuild checkout build --p openocd --stdout

The SDK will automatically set the environment variable OPENOCD to the installation path of this patched version.

Launch openocd with one of the provided or your own configuration file for the target board as an argument.


$OPENOCD/bin/openocd -f pulpissimo/fpga/pulpissimo-genesys2/openocd-genesys2.cfg

In a seperate terminal launch gdb from your pulp_riscv_gcc installation passing the ELF file as an argument with:


In gdb, run:

(gdb) target remote localhost:3333

to connect to the OpenOCD server.

In a third terminal launch a serial port client (e.g. screen or minicom) on Linux to riderect the UART output from PULPissimo with e.g.:

screen /dev/ttyUSB0 115200

the ttyUSB0 target may change.

Now you are ready to debug!

In gdb, load the program into L2:

(gdb) load

and run the programm:

(gdb) continue

Of course you can also benefit from the debug capabilities that GDB provides.

E.g. see the disasembled binary:

(gdb) disas

List the current C function, set a break point at line 25, continue and have fun!

(gdb) list
22  int main()
23  {
24    while (1) {
25      printf("Hello World!\n\r");
26     for (volatile int i=0; i<1000000; i++);
27    }
28    return 0;
29  }

(gdb) b 25
Breakpoint 1 at 0x1c0083d2: file test.c, line 25.
(gdb) c

Breakpoint 1, main () at test.c:25
25      printf("Hello World!\n\r");

(gdb) disas
Dump of assembler code for function main:
   0x1c0083d4 <+22>:    li  a1,1
   0x1c0083d6 <+24>:    blt s0,a5,0x1c0083e8 <main+42>
=> 0x1c0083da <+28>:    lw  a5,12(sp)
   0x1c0083dc <+30>:    slli    a1,a1,0x1
   0x1c0083de <+32>:    addi    a5,a5,1
   0x1c0083e0 <+34>:    sw  a5,12(sp)

(gdb) monitor reg a5
a5 (/32): 0x000075B7

Not all gdb commands work as expected on the riscv-dbg target. To get a list of available gdb commands execute:

monitor help

Most notably the command info registers does not work. Use monitor reg instead which has the same effect.

Proprietary verification IPs

The full simulation platform can take advantage of a few models of commercial SPI, I2C, I2S peripherals to attach to the open-source PULP simulation platform. In rtl/vip/spi_flash, rtl/vip/i2c_eeprom, rtl/vip/i2s you find the instructions to install SPI, I2C and I2S models.

When the SPI flash model is installed, it will be possible to switch to a more realistic boot simulation, where the internal ROM of PULP is used to perform an initial boot and to start to autonomously fetch the program from the SPI flash. To do this, the LOAD_L2 parameter of the testbench has to be switched from JTAG to STANDALONE.

PULP platform structure

After being fully setup as explained in the Getting Started section, this root repository is structured as follows:

  • rtl/tb contains the main platform testbench and the related files.
  • rtl/vip contains the verification IPs used to emulate external peripherals, e.g. SPI flash and camera.
  • rtl could also contain other material (e.g. global includes, top-level files)
  • ips contains all IPs downloaded by update-ips script. Most of the actual logic of the platform is located in these IPs.
  • sim contains the ModelSim/QuestaSim simulation platform.
  • pulp-sdk contains the PULP software development kit; pulp-sdk/tests contains all tests released with the SDK.
  • ipstools contains the utils to download and manage the IPs and their dependencies.
  • ips_list.yml contains the list of IPs required directly by the platform. Notice that each of them could in turn depend on other IPs, so you will typically find many more IPs in the ips directory than are listed in this file.
  • rtl_list.yml contains the list of places where local RTL sources are found (e.g. rtl/tb, rtl/vip).


The RTL platform has the following requirements:

  • Relatively recent Linux-based operating system; we tested Ubuntu 16.04 and CentOS 7.
  • Mentor ModelSim in reasonably recent version (we tested it with version 10.6b -- the free version provided by Altera is only partially working, see issue #12).
  • Python 3.4, with the pyyaml module installed (you can get that with pip3 install pyyaml).
  • The SDK has its own dependencies, listed in https://github.com/pulp-platform/pulp-sdk/blob/master/README.md

Repository organization

The PULP and PULPissimo platforms are highly hierarchical and the Git repositories for the various IPs follow the hierarchy structure to keep maximum flexibility. Most of the complexity of the IP updating system are hidden behind the update-ips and generate-scripts Python scripts; however, a few details are important to know:

  • Do not assume that the master branch of an arbitrary IP is stable; many internal IPs could include unstable changes at a certain point of their history. Conversely, in top-level platforms (pulpissimo, pulp) we always use stable versions of the IPs. Therefore, you should be able to use the master branch of pulpissimo safely.
  • By default, the IPs will be collected from GitHub using HTTPS. This makes it possible for everyone to clone them without first uploading an SSH key to GitHub. However, for development it is often easier to use SSH instead, particularly if you want to push changes back. To enable this, just replace https://github.com with git@github.com in the ipstools_cfg.py configuration file in the root of this repository.

The tools used to collect IPs and create scripts for simulation have many features that are not necessarily intended for the end user, but can be useful for developers; if you want more information, e.g. to integrate your own repository into the flow, you can find documentation at https://github.com/pulp-platform/IPApproX/blob/master/README.md

External contributions

The supported way to provide external contributions is by forking one of our repositories, applying your patch and submitting a pull request where you describe your changes in detail, along with motivations. The pull request will be evaluated and checked with our regression test suite for possible integration. If you want to replace our version of an IP with your GitHub fork, just add group: YOUR_GITHUB_NAMESPACE to its entry in ips_list.yml or ips/pulp_soc/ips_list.yml. While we are quite relaxed in terms of coding style, please try to follow these recommendations: https://github.com/pulp-platform/ariane/blob/master/CONTRIBUTING.md

Known issues

The current version of the PULPissimo platform does not include yet an FPGA port or example scripts for ASIC synthesis; both things may be deployed in the future. The ipstools includes only partial support for simulation flows different from ModelSim/QuestaSim.

Support & Questions

For support on any issue related to this platform or any of the IPs, please add an issue to our tracker on https://github.com/pulp-platform/pulpissimo/issues

SolderPad Hardware License v0.51

This license is based closely on the Apache License Version 2.0, but is not approved or endorsed by the Apache Foundation. A copy of the non-modified Apache License 2.0 can be found at http://www.apache.org/licenses/LICENSE-2.0.

As this license is not currently OSI or FSF approved, the Licensor permits any Work licensed under this License, at the option of the Licensee, to be treated as licensed under the Apache License Version 2.0 (which is so approved).

This License is licensed under the terms of this License and in particular clause 7 below (Disclaimer of Warranties) applies in relation to its use.


1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the Rights owner or entity authorized by the Rights owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Rights" means copyright and any similar right including design right (whether registered or unregistered), semiconductor topography (mask) rights and database rights (but excluding Patents and Trademarks).

"Source" form shall mean the preferred form for making modifications, including but not limited to source code, net lists, board layouts, CAD files, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, the instantiation of a hardware design and conversions to other media types, including intermediate forms such as bytecodes, FPGA bitstreams, artwork and semiconductor topographies (mask works).

"Work" shall mean the work of authorship, whether in Source form or other Object form, made available under the License, as indicated by a Rights notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) or physically connect to or interoperate with the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any design or work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the Rights owner or by an individual or Legal Entity authorized to submit on behalf of the Rights owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the Rights owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable license under the Rights to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form and do anything in relation to the Work as if the Rights did not exist.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:

You must give any other recipients of the Work or Derivative Works a copy of this License; and

You must cause any modified files to carry prominent notices stating that You changed the files; and

You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and

If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.


Project Meta

  • Registered on LibreCores 3 years ago
  • Project started 4 years ago
  • Last commit 1 year ago



Commits per year



Unique contributors per year


v1.0.2 is is the latest of 4 releases.

  • v1.0.2
    Nov 28, 2018 9c8e2bb
  • 1.0.1
    Nov 28, 2018 9c8e2bb
  • v1.0.1
    Nov 28, 2018 a9f8677
  • v1.0
    Feb 9, 2018 0e7dbf4


{"labels":["Others","Verilog-SystemVerilog","Tcl\/Tk","make","TeX","Markdown","Bourne Shell","Python","YAML","diff"],"series":[18,65,65,37,14,14,8,8,7,5]}

Share of languages used

Data Sheet
Last activity 1 year ago
v1.0.2 released 3 years ago
Primary language: Verilog-SystemVerilog
438 commits by 28 contributors
bluew Manuel Eggimann Germain Haugou Pasquale Davide Schiavone Francesco Conti

activity over the last year

LibreCores data updated 1 year ago